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Abstract — A method for determining the extents of a qualified viewing space (QVS) based on
repeatable and reproducible luminance measurements of augmented and virtual reality near-eye dis-
plays is described. This QVS mapping can also use other display performance metrics such as (1)
Michelson contrast, (2) modulation transfer function, or (3) color as boundary condition parameters.
We describe the use of a 4-mm-diameter entrance pupil, 1° to 2° field of view tele-spectroradiometer,
to determine the luminance and color uniformity of the virtual image. A 1-mm-diameter entrance pupil

is used to map the QVS boundaries based on luminance at the center of the virtual image. The lumi-

nance measurement results from a pair of binocular augmented reality display glasses in three separate

eye relief planes of the QVS of both eyes are presented. The data are further reduced to provide a perim-
eter profile of the QVS for the 50% of peak luminance boundary points in each eye relief plane.

DOI # 10.1002/jsid.729

1 Introduction

Head-up and near-eye display (HUD and NED, respectively)
manufacturers rely on luminance, color, and uniformity
measurements as essential performance evaluation criteria in
the augmented reality and virtual reality display visual field of
view (FOV). Recent work has been performed that defines a
minimum essential set of measurement instrument optical
system characteristics to assure repeatable and reproducible
photometric and colorimetric measurement results.'™
Building upon these findings, we give a method of defining
the boundaries of the qualified viewing space (QVS) based on
a display quality performance parameter. For example, the set
of physical location points in space, where the luminance
degrades to 50% of the peak, could be a defined boundary
condition. In all cases, the display performance parameters
are determined by positioning the measurement optical
system entrance pupil in different areas of the QVS.

2 Near-eye display measurement geometry

The International Electrotechnical Commission (IEC)
Technical Committee 110 Ad Hoc Group 12 (TC110
AHGI12) is working to create a standard test method for
NEDs. The geometric coordinate for describing the eye
pointing direction while viewing the NED is a rotation about
a vertical axis and a horizontal axis. This creates the familiar
angular coordinate system of longitudinal great circle lines for
the azimuth (horizontal) pointing direction angles left or
positive right and latitude lines slicing through the spherical
volume to describe the positive elevation (vertical) pointing

direction angles. This is illustrated in Fig. 1. The intersection
of the three axes of the coordinate system is the design eye
point of the display, and the 0° pointing direction corresponds
to the optical axis of the NED device under test (DUT).

Also shown in Fig. 1 is the x—y motion direction definitions.

A critical consideration of the geometry for measurement
of display performance parameters is the vantage point or
center of the spherical coordinate system. Choices being
considered by the IEC as the standard vantage point are
either the center of rotation of the eye or virtual plane
position of the iris, which is shown in Fig. 2.

Different distances are used for the offset from the eye
entrance pupil virtual image plane and the center of rotation.
The current IEC draft standard has this value as 13.4 mm.

3  Tele-spectroradiometer system design

The tele-spectroradiometer is part of the overall system
shown in Fig. 3. The system controller contains a graphics
generator to present testing patterns and color fields on the
DUT. An autocollimation reference mirror is used as an
alignment reference for parallax and virtual image distance
measurements. The light-emitting diode (LED)-based
tunable light standard can be used to calibrate the
spectroradiometer and DUT  spectral transmittance
measurements. The physically compact telescope has an
interchangeable 5- to 1-mm-diameter entrance pupil, a two-
dimensional image sensor, interchangeable field stops, and a
field lens system to couple the light entering the entrance
pupil into a charge-coupled device detector-based grating
spectroradiometer. The compact telescope is mounted to a
precision six-axis industrial robot. The system controller
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FIGURE 1 — Spherical coordinate system to specify the angular pointing
directions to different measurement locations within the display virtual im-
age field of view.
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s
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FIGURE 2 — In specifying vantage point for the center of the measure-

ment spherical coordinate system, either the iris pupil plane or the eye ro-
tation point can be selected but give different measurement results of
display performance.

sends commands to the six-axis robot to set (1) x, y, and z
positions, position of the vantage point relative to the DUT
(2) pointing direction relative to the exit pupil of the NED.
The interchangeable entrance pupil apertures are located at
the very front of the telescope. The system can be
configured into three different modes of data acquisition:

(1) spectroradiometric measurement,
(2) view and define measurement area, and
(3) image capture.
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System Controller

GS-1290
RadOMAcam Spectroradiometer
Telescope

RS-7 LED DUT NED
Tunable
Light Standard
Autocollimation
Reference Mirror

FIGURE 3 — Overall measurement system design not shown is the tele-
scope position system that controls the position and pointing direction of
the telescope. DUT, device under test; LED, light-emitting diode; NED,
near-eye display.

3.1  Spectroradiometric measurement

For the spectroradiometric measurement mode, the objective
lens focuses a 10° x 10° measurement field of the virtual
image from the DUT on a plane that contains five selectable
field stop apertures (FSAs) that define circular angular
measurement areas centered on the virtual image. The FSA
sizes are 5°, 2°, 1°, 0.5°, 0.33°, and 0.1° and are selected
with commands from the system controller. Light from the
DUT passes through the FSA and is relayed to a fiber optic
cable and then to the entrance slit of the grating
spectroradiometer. Acquiring the spectroradiometer data
and applying the CIE color matching functions yield
luminance and color of the virtual image for the FSA
sampled spot area. A different aperture can be commanded
into place, and a smaller or larger angular area of the display
virtual images can be measured (Fig. 4).

The entrance pupil can be moved in a plane perpendicular
to the optical axis as well as point in different directions to
measure different areas in the display virtual image FOV.
Figure 5 shows the internal optical system of the telescope
pointed in a different direction with the entrance pupil

2D Sensor Field Limit

Objective Lens

Field Stop _

/ Field Lenses
= e  C—
= "ﬂ%f‘*:;:l*::kt U/ N / |

Radiometric
Sensor
= Input Plane

N

FIGURE 4 — Light from the virtual image of the near-eye display enters
the 1- to 5-mm-diameter entrance pupil from the left and is focused on
the field of view aperture plane. The blue rays trace the 5° field of view ap-
erture into the end of the spectroradiometer fiber optic cable. The red rays
show the two-dimensional (2D) camera sensor field limit (16°).
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FIGURE 5 — With the vantage point selected to be either the center of the
telescope entrance pupil or the eye rotation point, the six-axis robot can
point the measurement direction to any azimuth and elevation to 0.001°
resolution. NED, near-eye display.

center selected as the vantage point for the different pointing
directions. The vantage point along the z axis can be changed
by a single parameter in the six-axis robot controls to enable
selection of an eye rotation center to acquire data as the
human eye would rotate through the QVS.

3.2 View and define measurement field

When commanded into the view mode, a few micrometers
thick beam splitter is inserted into the measurement optical
path, which diverts light to focus the DUT virtual image on
a camera sensor plane. An LED lamp is also positioned
behind the FSA and projects light out toward the DUT.
This light is also reimaged off of the back of the beam
splitter, through the retroreflector optical system and onto
the camera sensor plane in exact registration to the virtual
image measurement field sampled for spectral-based
luminance measurement. This mode can also be used as an
autocollimation source to set the optical axis of the telescope
perpendicular to the reference mirror. This can be used to
precisely maintain pointing direction when positioning the
telescope between the left and right eye positions of the
NED DUT.

3.3 Image capture and analysis

In image capture mode, the camera acquires an image that is
correlated to the color and luminance measured by the tele-
spectroradiometer in the FSA measurement field. The
uniformity of the captured virtual image measurement field
is determined in the system controller. Multiple images
displayed on the DUT produced by the internal graphics
generator can be captured and analyzed to produce a model
of the display color uniformity, image distortion, and
Michelson contrast or modulation transfer function. The
DUT can also be evaluated for uniformity of the QVS and
virtual image quality as a function position in the QVS.

For data acquisition in different pointing directions and
different locations within the design eye box, the six-axis
robot controls the position of the compact telescope to +25-
pm precision and pointing direction with 0.001° resolution.
The compact size allows positioning of the telescope
entrance pupil at the display reference eye point between
the earpieces of NEDs. Full FOV data were acquired at
four different eye relief distances for luminance and color
uniformity and Michelson contrast in 35 different pointing
directions. At each of these pointing directions, a 10° x 10°
image is captured with a pixel resolution of less than 20 arc
seconds (0.1 mrad) and 1° angular spot size capture for the
spectroradiometric data at the center of each of the 35
captured fields for the luminance and color uniformity of
the virtual image.

4  System performance validation

Validation of the performance of this NED spectroradiometer
system was performed using a Gamma Scientific
SpectralLED® tunable standard light source (TSLS) with 30
visible spectral channels with each channel having 16-bit

TABLE1 — Luminance and x—y chromaticity variation as a function FOV aperture for three LED spectral power distributions with centroid wavelengths near

the ITU-R Rec.2020 primaries.

FSA aperture sizes

0.1° 0.3° 0.5° 1° 2° 5°
DA (nm, x,y) Reported luminance values (cd/mz) c %6
466.1 1263 1257 1258 1262 1276 1273 8 0.63
x ch 0.1394 0.1394 0.1394 0.1393 0.1392 0.1392 le — 4
y-ch 0.051 0.051 0.051 0.051 0.0513 0.0513 2e — 4
536.5 7980 7971 7977 7892 7892 7992 46 0.58
x-ch 0.2219 0.2217 0.2218 0.2217 0.2217 0.222 le—4
y-ch 0.712 0.7121 0.712 0.712 0.712 0.7116 2e — 4
622.2 1368 1367 1351 1357 1351 1358 7 0.53
x-ch 0.6937 0.6937 0.694 0.694 0.694 0.6941 2e — 4
y-ch 0.3045 0.3046 0.3041 0.3044 0.3041 0.304 2e — 4

DA, dominant wavelength; o, standard deviation; %a, percent variance of the measurement results; FOV, field of view; FSA, field stop aperture; LED, light-

emitting diode.
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resolution in intensity setting. The LEDs used in this standard
source are actively thermoelectrically temperature stabilized,
and the radiometric output is monitored and actively
controlled with an integral, thermoelectrically temperature-
stabilized silicon photodiode and linear transimpedance
amplifier sensor. Calibration of the TSLS is based on
standards obtained from and calibrated by National Institute
of Standards and Technology. The location of the calibration
is the Gamma Scientific ISO/IEC 17025 accredited
calibration laboratory (National ~Voluntary ~Laboratory
Accreditation Program Lab code 200823-0).The scope of
accreditation on the National Institute of Standards and
Technology National Voluntary Laboratory Accreditation
Program website reports the uncertainty values for the
calibrated values of luminance, spectral radiance, and
chromaticity coordinates. Variation in luminance and color
was determined for all five FOV apertures by measuring 1
luminance value for each channel.

The TSLS was programmed to produce 70% power level for
all the channels, and spectroradiometric measurements were
taken at each FOV aperture setting from 0.1° to 5°. The
variation in the luminance reported for three of the TSLS
channels is summarized in Table 1 for three centroid
wavelengths that are closest to the ITU-R BT.2020 three
primary monochromatic wavelengths of 467, 532, and 630 nm.

5 Measurement results

Measurements were taken on the Epson BT-200 Augmented
Reality glasses with a 4-mm-diameter entrance pupil in 35
different pointing directions within the virtual image FOV as
shown in Fig. 6. At each pointing direction, an image was
captured with the internal complementary metal-oxide
semiconductor view finder camera with the FSA LED
illumination turned OFF. Figure 7 shows an image capture
of the lower left corner of the virtual image through the

Azimuth

FIGURE 6 — lllustration of the 35 different pointing directions for the
spectral-based luminance and color results.
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729.87x147.38 pixels (722x168); 8-bit; 118K

Gray Value

300
Distance (pixels)

721x721 pixels; RGB; 2MB

a
.

FIGURE 7 — Captured image of the lower left corner of the virtual image
of the BT200 glasses along with an analysis of the luminance drop-off to
the left of the virtual image.

Virtual Image Luminance Uniformity Profile, cd/m?

Elevation 1.425 35
Azimuth

H200-220 m220-240 240-260 260-280 m280-300 m300-320 m320-340

FIGURE 8 — Luminance surface profile plot of 35 spectroradiometric di-
rectional measurements using a 1° field stop aperture measurement field.



Virtual Image Correleted Color Temperature Uniformity Profile, °Kelvin

Elevation 1.425

835  Azimuth

H 6400-6600 m6600-6800 m6800-7000 = 7000-7200 m7200-7400 m 7400-7600

FIGURE 9 — Correlated color temperature surface profile plot of 35 di-
rectional measurements using a 1° field stop aperture measurement field.

BT200 Left Eye QVS (Eye Relief 18mm)

-1

-3
4
5
8 9

W 55.00%-60.00% m 60.00%-65.00% I 65.00%-70.00% m 70.00%-75.00%
= 75.00%-80.00% m 80.00%-85.00% m 85.00%-90.00%

50.00%
9 8 7 6 5 4 3 2 10 1 2 3 4 5 6 7
1 50.00%-55.00%

= 90.00%-95.00% m 95.00%-100.00%

ER18_BT200_Left 50% Lum QVS profile

0.00%-50.00% = 50.00%-100.00%

FIGURE 10 — Qualified viewing space (QVS) luminance profiles of left
side, 18-mm eye relief.

right eye display. The green circular area in the center
indicates the position of the 1° FSA spectroradiometric
measurement field. Additional analysis can be applied to the
image as shown in Fig. 7 where a 20 x 650 pixel region of
interest is selected and shows a 20% luminance fall off
toward the left edge of the virtual image.

Luminance measurements were taken at the 35 pointing
directions with the 1° field stop aperture measurement field
(Fig. 7), sampling the whole virtual image of the BT200
glasses at one eye relief distance.

The resulting three-dimensional data plot representation
of this luminance profile is shown in Fig. 8. Each point on
the surface of the luminance map corresponds to a
spectroradiometric  scan using a backside thinned,
thermoelectrically cooled scientific grade charge-coupled
device sensor to acquire the spectral data with high spectral
purity and 16-bit signal to noise. Similar data in Fig. 9 for
the correlated color temperature show the variation of
image white point as a function of the angular pointing
direction with the vantage point at the entrance pupil plane
centered on the optical axis of the DUT.

BT200 Right Eye QVS (Eye Relief 18mm)

-1

3

-5
9 -8-7 6-5-4-3-2-1012 3 456 7 8 9

1 50.00%-55.00% m 55.00%-60.00% = 60.009%-65.00% © 65.00%-70.00% m70.00%-75.00%

m75.00%-80.00% mB80.00%-85.00% m 85.00%-90.00% m 90.00%-95.00% m 95.00%-100.00%

ER18_BT200_Right 50% Lum QVS profile

¥ 0.00%-50.00%  m50.00%-100.00%

FIGURE 11 — Qualified viewing space (QVS) luminance profiles of right
side, 18-mm eye relief.
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For measurements mapping the QVS, a 1-mm-diameter
entrance pupil was placed at the design eye point on the
optical axis of the left eye of the DUT. The DUT optical
axis is located using an alignment grid pattern produced in
the virtual image by the system controller internal pattern
generator. The optical axis of the telescope was then made
collinear with the DUT optical axis using and iterative
process of moving between the 18- and 28-mm eye relief
distances until there is no angular shift in the grid pattern
location. This azimuth and elevation direction was set as
the origin direction of the coordinate system for the left
eye in the robot controller. Once the origin pointing
direction is established, the x and y axes motions of the
robot are in a plane perpendicular to the origin axis, an
iterative process of scans along the x and y axes based on
the locations of the points where the luminance is 1% of
the peak value is processed to determine the center of the
QVS based on luminance. For example: At a 24-mm eye
relief distance, the entrance pupil is scanned along the
x-axis direction to locate the two points where the
luminance drops to 1% of the peak value. The near center
of the QVS is the point along the x axis halfway between

BT200 Left Eye QVS (Eye Relief 24mm)

5
4
3
2
1
0

1
-2
-3
-4
5

9 & 7 6 -5 4 3 -2 414 0 1 2 3 4 5 6 7 8 9

m 50.00%-55.00% m 55.00%-60.00% m 60.00%-65.00%  65.00%-70.00% m 70.00%-75.00%
m 75.00%-80.00% m80.00%-85.00% m 85.00%-90.00% m90.00%-95.00% m 95.00%-100.00%

ER24_BT200_Left 50% Lum QVS profile

¥ 0.00%-50.00% m50.00%-100.00%

FIGURE 12 — Qualified viewing space (QVS) luminance profiles of left
side, 24-mm eye relief.

572 Austin et al. / QVS determination of near-eye and head-up displays

these two points. Then starting from this x-axis position,
the entrance pupil is scanned along the y-axis direction to
locate the two points where the luminance drops to 1% of
the peak value. The x-axis scan is repeated at this new
y-axis starting point to determine the difference between
the first x-axis midpoint and the newest determined point.
When the difference was less than 1 mm, this xyz location
was used to set the origin for the left eye in the robot
controller. The same process was repeated for the DUT
right eye exit pupil.

The pattern displayed on the DUT was changed to a
pattern consisting of a white 1.5° square in the middle of
the FOV and a 1.5° wide band extending in from all four
extreme edges, top, bottom, left, and right. This appears as
a white picture frame 1.5° wide with a 1.5° white square in
the middle of the DUT FOV. The 1° FSA measurement
field was selected, and the entrance pupil was moved toward
the display along the z axis to an 18-mm eye relief point. A
spectral radiance measurement of the central square was
made, and the luminance and color coordinates were
computed and stored. A robot-programmed measurement
sequence was used to then scan +9 mm in x direction and

BT200 Right Eye QVS (Eye Relief 24mm)

AWM

n

9 8 -7 -6 -5 -4 -3 -2-10 12 3 4 5 6 7 8 9
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FIGURE 13 — Qualified viewing space (QVS) luminance profiles of right
side, 24-mm eye relief.



+5 mm in y direction in the xy plane of this 18-mm eye relief
distance at 1-mm data spacing.

The robot was then sent to the recorded spatial and
pointing direction zero point location for the left eye, the
entrance pupil moved to the 18-mm eye relief point and the
+9 and +5 mm points scanned. The resulting data are
shown as a three-dimensional plot of QVS luminance as a
function of location in the 18-mm eye relief plane in Figs 10
and 11. Another analysis of the data set is shown in the
lower half of the figures where the perimeter of the QVS for
50% luminance is shown by the line created by the
transition from blue to orange color.

Repeating these raster measurements at additional eye
relief distances of 24 and 28 mm shows the well-formed
QVS derived from the 50% luminance perimeter plots.

The measurement sequence can be repeated to determine
the QVS defined by the 50% luminance of the horizontal edge
of the virtual image FOV by rotating the azimuth angle to
point and center the 1° spectral measurement aperture on
the edge of the virtual image. This can be facilitated by
using the same 1.5° wide band or “picture frame” at the

edges for the DUT FOV as the luminance measurement
target (Figs 12-15).

Comparing the orange/blue border regions for the left and
right eye positions at the three eye relief distances shows
the largest perimeter of the luminance-based QVS is at the
24-mm eye relief plane. At each eye relief distance, the
perimeter is larger for the right side position. The three-
dimensional luminance plot profiles show an asymmetry of
the luminance traversing across the 0° elevation plane. This
shows the peak luminance profile biased toward the nasal
side of the left and right QVS. This would indicate that
users of the AR device with larger interpupillary distance
will have a lower peak luminance available from the virtual
image within a 1° FSA viewing field.

Data were also taken with smaller FSA measurements with
nearly identical results. Measurements with a 2° FSA to
correspond to the angular subtense of the human eye foveal
region are planned.

Other display performance parameters such as horizontal
and vertical contrast resolution can be used to determine
the, most likely very different, QVS shape.

BT200 Left Eye QVS (Eye Relief 28mm)
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®75.00%-80.00% m80.00%-85.00% m B85.00%-90.00% m90.00%-95.00% m 95.00%-100.00%

BT200 Right Eye QVS (Eye Relief 28mm)
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9 8-7 6 5-4-3-2-1012 3 456 7 8 9

m50.00%-55.00% m55.00%-60.00% m 60.00%-65.00% & 65.00%-70.00% m70.00%-75.00%
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ER24_BT200_Left 50% Lum QVS profile

ER28_BT200_Right 50% Lum QVS profile
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FIGURE 14 — Qualified viewing space (QVS) luminance profiles of left
side, 28-mm eye relief.

H0.00%-50.00% ™ 50.00%-100.00%

FIGURE 15 — Qualified viewing space (QVS) luminance profiles of right
side, 28-mm eye relief.
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6 Conclusion

Results of spectral-based luminance characterization of
NEDs have not been reported before, and this metrology
equipment opens up possibilities for other fast and precise
measurement of display performance parameters. The
method is applicable to all HUDs and augmented reality
and virtual reality headsets limited only by the physical size
of the optical assembly around the entrance pupil.
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